surface. The block is stretched by 0.2 m and released from rest at t = 0. It then executes simple harmonic motion with angular frequency $\omega = \frac{\pi}{2}$ rad/s. Simultaneously at t = 0, a small pebble

5. A small block is connected to one end of a massless spring of un-stretched length 4.9 m. The other end of the spring (see the figure) is fixed. The system lies on a horizontal frictionless

is projected with speed v from point P at an angle of 45° as shown in the figure. Point P is at a horizontal distance of 10 m from O. If the pebble hits the block at t = 1 s, the value of v is $(\text{take g} = 10 \text{ m/s}^2)$

 $(A) = \frac{50}{50} \text{ m/s}$ $(B) = \frac{51}{51} \text{ m/s}$ $(C) = \frac{52}{52} \text{ m/s}$ $(D) = \frac{53}{52} \text{ m/s}$

At t=0, le both the remasses were given motion.

Given that both masses meet at t=18, so, we just need to find the position of mass which is doing SHM at t=18.

so, using velo equation

 $x = A\cos\omega t$ [$\cos\omega t$ is taken because — at t = 0, at t = 0, at t = 0, at t = 0, at t = 0. t = 0.

from eqm point $0.2 = A \cos 0$

 $\Rightarrow A = 0.2$ 50, at t = 1, $x = 0.2 \cos(\omega) = 0.2 \cos(\frac{\pi}{3}) \quad \left[\omega = \pi/3 \quad \text{GIVEN}\right]$

= 0.1m

50, at t=15.

~ - 5 m -> > - 5 m ->

so, the pebble needs

be at this position

at t=18.

ie pebble needs to cover a distance horizontally = 10-5=5m.

Pebble At t=Isec K- 5m --->1 50, Vx= VCOS45 = V & x=5m & t=18ec $\phi \quad \chi = V^*t \Rightarrow \quad 5 = \underbrace{V \times 1}_{ > 2} \quad v = 5\sqrt{2}$ $v = 5\sqrt{2}$ $v = 5\sqrt{2}$ $v = 5\sqrt{2}$

OPTION (A) IS CORRECT ANSWER.